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Abstract— In this paper, we address the distributed opti-
mization problem over unidirectional networks with possibly
time-invariant heterogeneous bounded transmission delays. In
particular, we propose a modi�ed version of the Accelerated
Distributed Directed OPTimization (ADD-OPT) algorithm,
herein called Robusti�ed ADD-OPT (R-ADD-OPT), which
is able to solve the distributed optimization problem, even
when the communication links su�er from heterogeneous but
bounded transmission delays. We show that if the gradient
step-size of the R-ADD-OPT algorithm is within a certain
range, which also depends on the maximum time delay in the
network, then the nodes are guaranteed to converge to the
optimal solution of the distributed optimization problem. The
range of the gradient step-size that guarantees convergence can
be computed a priori based on the maximum time delay in
the network.

Index Terms— distributed optimization, bounded delays,
gradient tracking, unidirectional networks, directed graphs.

I. Introduction

Recently, there has been an increasing number of multi-
agent optimization problems where a group of agents
aims at optimizing the sum of their objective functions,
by allowing local information exchange over an under-
lying communication network. Such formulation arises
in cases where each agent has a local objective and the
objective is to reach a compromise without resorting to
central coordination. Such a distributed formulation is
extensively used to solve multi-node optimization problems
for several large-scale applications, including distributed
energy resource management [1], [2], resource allocation
in data centers [3], large-scale machine learning [4], [5],
and distributed localization in sensor networks [6], [7].

In particular, in a multi-agent system comprised of a
set of n agents communicating over a network, each agent
j, represented by a node in a graph, has access only to
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its own local objective function fj : R → R, and aims
at minimizing the sum of objectives

∑n
j=1 fj(z), where

the common decision variable1 z ∈ R is computed via
information exchange and agreement with its neighbors.
More speci�cally, the agents aim at solving cooperatively
the following optimization problem:

min
z

1

n

n∑
j=1

fj(z). (1)

Over the past decade, considerable research e�orts have
been dedicated in consensus-based distributed optimization
problems over networks with bidirectional links, forming
undirected graphs. Such contributions have been exten-
sively studied and presented in [8]–[10]. These works
exploit the symmetry of bidirectional communication
structure to enable the construction of doubly-stochastic
consensus weight matrices, so that local decision variables
of networked agents collaboratively converge towards the
solution of the distributed optimization problem in (1) .

While initial e�orts yielded valuable insights and algo-
rithms, attention has shifted to more realistic scenarios
with unidirectional network links, where the information
might �ow in only one direction. This attribute is prevalent
in wireless communication due to varying transmission
power and interference levels. Such (possibly asymmetric)
networks are represented as directed graphs (digraphs),
where directed edges represent unidirectional commu-
nication links. To address the distributed optimization
problem over unidirectional links, there have been di�erent
approaches that are based on the following distributed
average consensus methods: (a) the distributed weight
balancing [11] where agents adjust the weights on their
outgoing links to asymptotically reach weights that form a
doubly-stochastic matrix, (b) the surplus-based approach
[12] where the asymmetry of the digraph is mitigated
by augmenting the state of each agent with an additional
variable (often called surplus) that locally tracks individual
state updates through the assignment of weights on both the
incoming and outgoing links that form both row-stochastic
and column-stochastic matrices, respectively, and (c) ratio
consensus [13] where agents run an extra concurrent
iteration that asymptotically learns the right eigenvector
of the column-stochastic matrix that is formed by having
agents assign weights on their outgoing links. For more

1To simplify the presentation and analysis, in this work, we use a scalar
decision variable. However, the results presented herein can be readily
extended to vector variables.



information and comparison between these distributed
average consensus methods over digraphs, the interested
reader is referred to [14].

In the context of distributed optimization over reliable
and time-invariant digraphs, Xi et. al. introduced two
algorithms based on the ratio consensus protocol: the
Directed EXact �rsT-ordeR Algorithm (DEXTRA) [15]
and ADD-OPT [16] that incorporates gradient tracking
to record and correct the locally aggregated gradients
at each agent, and accelerate the convergence to the
optimal solution. Moreover, Nedich et. al. in [17], [18]
proposed the Subgradient-push and Push-DIGing algo-
rithms for time-varying digraphs, based on the push-
sum consensus algorithm. Using the surplus-consensus
method, Xi et. al. introduced the Directed-Distributed
Projected Subgradient (D-DPS) and Directed-Distributed
Gradient Descent (D-DGD) algorithm, respectively, to
solve distributed optimization problems over digraphs, in
[19] and [20], respectively.

Although the aforementioned distributed optimization
algorithms can successfully overcome the asymmetry of
unidirectional networks and potentially �nd the optimal
solution in (1) , none of them considered unreliable net-
works where the information �ow between agents might
be delayed. This factor arises inherently as the number of
agents in the network grows, and hence a corresponding
increase in the quantity of communication links can occur.
This surge of links often results in information congestion
within the network, giving rise to transmission delays that
exert a signi�cant degradation on the performance and
e�cacy of distributed optimization algorithms. Extensive
work has been done, towards the development of mitigation
strategies for addressing the challenges posed by congested
networks, including the transmission delays encountered
over communication links. These challenges have been
analysed in the works presented in [21], [22], in the
context of distributed average consensus. Interestingly, in
the context of distributed optimization, an early work in
[23] by Tsianos et. al. analyzed a push-sum consensus-
based distributed optimization algorithm for digraphs that
can handle �xed bounded communication delays. However,
this work lacks the analysis of convergence, as well as the
incorporation of gradient tracking, a crucial feature known
for expediting the convergence to the optimal solution
[24]–[26].

The aforementioned works illustrate the promising
potential in the study and development of communication-
aware strategies tailored to overcome the challenges posed
by communication delays in the context of consensus-based
distributed optimization algorithms. To the best of our
knowledge, our work is the �rst to propose and analyze a
distributed optimization algorithm with gradient tracking
over directed graphs in the presence of time-invariant
delays, as highlighted in Table I.

In this work, we tackle the problem of distributed
optimization over directed graphs, where the transmission
links are prone to heterogeneous communication delays.

TABLE I: Gradient-based distributed optimization algorithms over
directed graphs (k denotes the number of algorithm iterations, and
0 < µ < 1 the convexity constant, introduced in the subsequent section).

Algorithm Delays Converg. Rate Grad. Tracking

D-DGD [20] – O
(

ln k√
k

)
–

D-DPS [19] – O
(

1√
k

)
–

S-Push [17] – O
(

ln k√
k

)
–

PS-DDA [23] �xed O
(

1√
k

)
–

DEXTRA [15] – O
(
µk

)
3

ADD-OPT [16] – O
(
µk

)
3

Push-DIGing [18] – O
(
µk

)
3

R-ADD-OPT �xed O
(
µk

)
3

Speci�cally, we consider how ADD-OPT algorithm [16]
can be modi�ed in order to operate even in the presence
of heterogeneous communication delays. Towards this
end, we develop a framework that seamlessly integrates
handling mechanisms of heterogeneous delays induced in
the transmission links, by embedding the robusti�ed Ratio
Consensus protocol in the classical ADD-OPT algorithm.
The proposed algorithm, herein called the Robusti�ed
ADD-OPT (R-ADD-OPT) algorithm, enables nodes that
communicate over strongly connected digraphs, to converge
to the optimal solution of the distributed optimization
problem, even in the presence of heterogeneous delays. In
our theoretical analysis, we demonstrate that the conver-
gence of nodes’ decision variables to the optimal solution
remains assured, given that the gradient step-size is within
a speci�c range. The range for which the algorithm is
guaranteed to converge to the optimal solution is dependent
on the maximum delay (provided it remains bounded)
existing in the network. The proof of convergence is
based on augmenting the network’s corresponding weighted
adjacency matrix, to handle bounded time-invariant delays.
It is conjectured via simulations that the R-ADD-OPT
algorithm works also for bounded time-varying delays, for
a gradient step-size within a speci�c range, upper bounded
by the step-size for the maximum time-invariant delay.
However, the proof for this (or a tighter) range remains
an open problem.

II. Preliminaries

A. Notation

In this paper, we denote vectors by lowercase bold letters,
and matrices by uppercase italic letters. The n×n identity
matrix is denoted by In, and the n dimensional column
vectors of all ones and zeros are represented by 1n and
0n, respectively. The Kronecker product of two matrices
A and B is denoted by A ⊗ B. For any f(x),∇f(x)
denotes the gradient of f at x. The spectral radius of
a matrix A is represented by ρ(A). The right and left
eigenvectors of an irreducible column-stochastic matrix A,
corresponding to the eigenvalue of 1, are denoted by π and
1>n , respectively, such that 1>nπ = 1. By ‖·‖, and depending



on its argument, we denote a particular matrix norm, or a
vector norm that is compatible with this particular matrix
norm, i.e., ‖Ax‖≤ ‖A‖‖x‖ for all matrices, A, and all
vectors, x. The Euclidean norm of vectors and matrices is
denoted by ‖·‖2.

B. Network Model
Consider n agents (represented by graph’s nodes) com-

municating over a strongly connected network2, G = (V, E),
where V = {v1, · · · , vn} is the set of nodes and E ⊆ V ×V
is the set of edges (representing the communication links
between agents). The total number of edges in the network
is denoted by m = |E|. A directed edge εji , (vj , vi) ∈ E ,
where vj , vi ∈ V , represent that node vj can receive
information from node vi, i.e., vi → vj . The nodes that
transmit information to node vj directly are called in-
neighbors of node vj , and belong to the set N in

j = {vi ∈
V|εji ∈ E}, with its cardinality denoted by dinj = |N in

j |
called the in-degree. The nodes that receive information
from node vj directly are called out-neighbors of node vj ,
and belong to the set N out

j = {vl ∈ V|εlj ∈ E}, with its
cardinality doutj = |N out

j | called the out-degree. Note that
self-loops are included in digraph G and this implies that
the number of in-going links of node vj are (dinj + 1) and
similarly the number of its out-going links is (doutj + 1).

C. Robusti�ed Ratio Consensus over Directed Graphs
To reach an agreement on the common decision variable

z in (1) in a distributed way and over digraphs, one can
employ the Ratio Consensus protocol [27] such that all nodes
in the network converge to the network-wide average of
their initial values. A protocol that handles time-varying
(yet bounded) communication delays to ensure asymptotic
average consensus was proposed in [21]. Consider that node
vj undergoes an a priori unknown delay τ ji bounded by
a positive integer τ̄ ji, i.e., τ ji ≤ τ̄ ji <∞. The maximum
delay in the network is denoted by τ̄ = max{τ̄ ji}. The
own value of node vj is always instantly available without
delay, i.e., τ jj = 0. At each time step k, each node vj
maintains a state variable xjk ∈ R (initialized at xj0 = V j ,
where V j is an arbitrary value of node vj), an auxiliary
scalar variable, yjk ∈ R+ (initialized at yj0 = 1), and zjk ∈ R
set to zjk = xjk/y

j
k. Based on this notation, the strategy

proposed in [21] involves each node iteratively updating
its states according to:

xjk+1 = pjjx
j
k +

∑
vi∈Nin

j

pjix
i
k−τji , (2a)

yjk+1 = pjjy
j
k +

∑
vi∈Nin

j

pjiy
i
k−τji , (2b)

where P = {pji} ∈ Rn×n+ forms a nonnegative column-
stochastic matrix, since the weights plj are assigned using:

plj =

{
1

1+doutj

, vl ∈ N out
j ∪ {vj},

0, otherwise.
(3)

2A digraph G is strongly connected if for every pair of vertices vi and
vj ∈ V , vj is reachable by a directed walk from vi

Since each node vj assigns the weights according to (3) ,
it is required that the nodes have the knowledge of their
out-degree. Clearly, in the absence of delays, this strategy
reduces to the Ratio Consensus algorithm in [27]. By
construction, matrix P is primitive column-stochastic, and
the variables yjk are set to 1. Then, the limit of the ratio
xjk over yjk, is the average of the initial values and is given
by [27], [28]:

lim
k→∞

zjk = lim
k→∞

xjk
yjk

=

(∑n
i=1 x

i
k

)
πj

nπj
=

1

n

n∑
i=1

xi0. (4)

D. Assumptions

Prior introducing the R-ADD-OPT algorithm, we make
the following assumptions:
Assumption 1: (Strong connectivity)
The communication graph G(V, E) is a strongly connected
digraph.

Assumption 2: (Out-neighborhood knowledge)
Each node vj ∈ V knows its out-degree, i.e., the number
of out-neighboring nodes.

Assumption 3: (Lipschitz-continuous gradients and
strong convexity)
Each local function fi is di�erentiable, strongly convex,
and its gradient is globally Lipschitz-continuous, i.e., for
any i and z1, z2 ∈ R :
a) there exists a positive constant L such that

‖∇fi (z1)−∇fi (z2)‖ ≤ L ‖z1 − z2‖ ,
b) there exists a positive constant µ such that

fi (z1)− fi (z2) ≤ ∇fi (z1)
>

(z1 − z2)− µ

2
‖z1 − z2‖2 .

Notably strong convexity of the functions fi imply that (1)
has a unique and bounded global optimal solution z∗.

Assumption 4: (Time-invariant heterogeneous delays)
The delay on link εji is denoted by 0 ≤ τ ji ≤ τ̄ ji ≤ τ̄ ,
where τ̄ ji is the maximum delay on link εji, and τ̄ is
the maximum delay of all links in the digraph, i.e., τ̄ =
max

{
τ ji
}

.

III. Accelerated Distributed Optimization over Delayed
Unidirectional Networks

In this section, we mitigate the impediments of induced
communication delays, by embedding delay handling
mechanisms into the ADD-OPT algorithm. However, such
a strategy does not guarantee the convergence of network
nodes’ decision variables to the optimal solution of problem
(1) when assuming a gradient step-size within the range for
the original ADD-OPT algorithm. Hence, to guarantee the
convergence of the R-ADD-OPT algorithm to the optimal
solution, we provide a step-size analysis by computing the
allowable step-size range which depends on the maximum
delay in the network, given that it is bounded.

A. Robusti�ed ADD-OPT Algorithm (R-ADD-OPT)

We �rst introduce a modi�ed version of the ADD-OPT
algorithm that handles heterogeneous time-invariant, here-
inafter called R-ADD-OPT. In particular, the Robusti�ed



Ratio Consensus algorithm is embedded into the ADD-
OPT algorithm to ensure that the local decision variables
zj reach the average consensus value z regardless the
transmission delays on the links, while the ADD-OPT
algorithm shifts the coordinated value z to the optimal
solution of the optimization problem z∗. Similarly to
the original ADD-OPT algorithm, each node vj ∈ V
maintains three scalar variables, xjk, y

j
k, w

j
k all ∈ R, and

sets zjk = xjk/y
j
k. At each iteration k, node vj assigns the

weights to its states, and iteratively updates its variables at
each time step k ≥ 0, according to:

xjk+1 =
∑

vi∈Ñin
j

(pjix
i
k−τji − αwik−τji)−αwjk,

yjk+1 =
∑

vi∈Ñin
j

pjiy
i
k−τji ,

zjk+1 =
xjk+1

yjk+1

,

wjk+1 =
∑

vi∈Ñin
j

pjiw
i
k−τji +∇fj

(
zjk+1

)
−∇fj

(
zjk

)
, (5)

where Ñ in
j = {N in

j ∪ {vj}}, and each node is initialized
with yj0 = 1, wj0 = ∇fj(zj0), and arbitrary scalar values for
xj0, and zj0. Clearly, when τ̄ = 0, then the R-ADD-OPT
algorithms reduces to the ADD-OPT algorithm in [16].

B. Delayed Digraph Augmentation
To model possibly delayed information exchange be-

tween the network nodes, we employ an augmented graph
representation (as in [21]) by adding extra virtual nodes
that represent the delays on the links. The number of
extra virtual nodes representing the delays on the links
is bounded by the maximum delay in the network, τ̄ .
Hence, for each node vj ∈ V , we add τ̄ extra virtual nodes,
v

(1)
j , v

(2)
j , . . . , v

(τ̄)
j , where the virtual node v(r)

j holds the
information that is destined to arrive at node vj after r
time steps. Thus, the augmented digraph consists of at
most n(τ̄ + 1) nodes and (1 + 2τ̄)|E| edges. In general,
we augment a network of n = |V| nodes, by introducing
nτ̄ nodes which results to a total of n̄ = n(τ̄ + 1) nodes.
An example of a two-node digraph where the information
transmitted over the link ε21 is delayed by 2 time steps,
and for the link ε12 is delayed by 1 time step, is provided
in Fig.1.

v1

v
(2)
2 v

(1)
2

v2

v
(1)
1

p21
p21

p21

1

1

p12

p12

1

1

p11 p22

Fig. 1: Example of the augmented digraph with �xed transmission delays.

Based on the graph augmentation, we extend the original
vectors of the ADD-OPT algorithm, to keep the informa-
tion for all nodes and all possible delays, as follows: x̂k =

[
xk,(0), . . . ,xk,(τ̄)

]>
, ŷk =

[
yk,(0), . . . ,yk,(τ̄)

]>
, ẑk =[

zk,(0), . . . , zk,(τ̄)

]>
, ŵk =

[
wk,(0), . . . ,wk,(τ̄)

]>
, and

∇f̂(ẑk) =
[
∇f(zk,(0)) 0>nτ̄ )

]>
, where ∇f(zk,(0)) =

[∇f1(z1(k)), . . . ,∇fn(zn(k))]
>. Note that, the gradients

of the virtual nodes ∇f(zk,(r)), for r 6= 0, are always zero.
The vector xk,(0) contains all scalar states of all actual
nodes, while xk,(r) contains all scalar states of the virtual
nodes generated for delay r. Hence, the R-ADD-OPT
algorithm can be written in matrix-vector form (for the
analysis presented in the subsequent sections) as follows:

x̂k+1 = Ξx̂k − αŵk, (6a)

ŷk+1 = Ξŷk, (6b)

ẑk+1 = Y −1
k+1x̂k+1, (6c)

ŵk+1 = Ξŵk +∇f̂(ẑk+1)−∇f̂(ẑk), (6d)
where Yk = diag (ŷk). Additionally, we have the initial
conditions, x̂0 = [V > 0>nτ̄ ]>, ŷ0 = [1>n 0>nτ̄ ]>3, ŵ0 =
∇f̂0(ẑ0). Matrix Ξk ∈ Rn̄×n̄+ is a nonnegative matrix
associated with the augmented digraph:

Ξ ,


P (0) In×n 0 · · · 0
P (1) 0 In×n · · · 0

...
...

...
. . .

...
P (τ̄−1) 0 0 · · · In×n
P (τ̄) 0 0 · · · 0

 (7)

where each element of P (r) is determined by:

P (r)(j, i) =

{
P (j, i), if τ ji = r, (j, i) ∈ E ,
0, otherwise.

(8)

Clearly, matrix Ξ maintains column-stochasticity, although
the information sent over the links might be delayed.

IV. Convergence Analysis

To analyze the R-ADD-OPT in the presence of trans-
mission delays, we further de�ne the following notation:

x̄k =
1

n̄
1n̄1>n̄ x̂k (9a) ẑ∗ = [1>n z

∗ 0>n̄−n]> (9b)

w̄k =
1

n̄
1n̄1>n̄ ŵk (9c) ξ = ‖Ξ− In̄‖2 (9d)

ḡẑk =
1

n̄
1n̄1>n̄∇f̂(ẑk) (9e) ε = ‖In̄ − Ξ∞‖2 (9f)

ḡx̄k =
1

n̄
1n̄1>n̄∇f̂(x̄k) (9g) η = max(χ, ζ) (9h)

where z∗ comes from assumption A3, ζ = |1− n̄αL|, χ =
|1− n̄αµ|, Ξ∞ = limk→∞ Ξk, and Y∞ = limk→∞ Yk. The
convergence of Ξ and Y∞ is shown through the Lemma 1
and Lemma 2.

Lemma 1 (Xi et. al. [16]) . Let assumption A1 and A2 hold.
Consider Y∞ = limk→∞ Yk and Ξk = Ξ being the column-
stochastic matrix as de�ned in (7) , with its non-1n̄ Perron
vectors denoted by π. Then, for any vector a ∈ Rn̄, and for

3Note, that the ratio zk,(1), . . . , zk,(τ̄) of the virtual nodes could
involve a division by zero since their corresponding yk,(1), . . . ,yk,(τ̄)
initiates at 0. However, the values of the virtual nodes are never used to
evaluate gradients but they are introduced for analysis purposes instead.



ā = 1
n̄1n̄1>n̄ a, there exists 0 < σ < 1 such that ∀k

‖Ξa− Y∞ā‖π ≤ σ ‖a− Y∞ā‖π . (10)

Lemma 2 (Nedic et. al. [17]) . Let Assumptions A1 and A2
hold, and consider Yk and its limit Y∞ as generated from the
weight matrix Ξ. Then, there exist 0 < γ1 < 1 (the contraction
factor de�ned in Lemma 1 and 0 < ψ <∞ such that ∀k

‖Yk − Y∞‖ ≤ ψγk1 . (11)

Given the notation for the delayed case in (9) , we can
further denote tk, sk ∈ R3, and G,Hk ∈ R3×3, for all k as:

tk =

 ‖x̂k − Y∞x̄k‖
‖x̄k − ẑ∗‖2∥∥ŵk − Y∞ḡẑk

∥∥
 , sk =

 ‖x̂k‖20
0

 ,
G =

 σ 0 α
αcLỹ η 0

cdεLỹ (ξ + αLyỹ) αdεL2yỹ σ + αcdεLỹ

 ,
Hk =

 0 0 0

αLỹψγk−1
1 0 0

(αLy + 2)dεLỹ2ψγk−1
1 0 0

 , (12)

where σ is given in Lemma 3, c and d are positive constants
from the equivalence of ‖·‖ and ‖·‖2, L is the Lipschitz-
continuity constant from assumption A3, y = supk ‖Yk‖2,
ỹ = supk

∥∥Y −1
k

∥∥
2
, and ξ, ε, η are de�ned in (9) .

Lemma 3 (Xi et. al. [29]) . Let assumption A1 hold and
consider an irreducible and primitive nonnegative matrix W ∈
Rn×n+ and its non-1n Perron vector denoted by v. Then ∀a ∈
Rn we have:

‖Wa−W∞a‖v ≤ σW ‖a−W∞a‖v (13)

where σW , ‖W −W∞‖v < 1. One can also verify that

σW = σ2

(
diag

(√
v
)−1

W diag
(√

v
))

(14)

where σ2(·) is the second largest singular value of a matrix.

In order to prove convergence of the R-ADD-OPT
algorithm, we �rst need to show that the evolution
of ‖x̂k − Y∞x̂k‖, ‖x̂k − ẑ∗‖2, and

∥∥ŵk − Y∞ḡẑk
∥∥ are

bounded. In other words, these elements should be
bounded with respect to their predecessor state. Given
the notation in (12) we introduce Lemma 4, by which we
show that these elements are kept bounded (the proof is
reported in the Appendix).

Lemma 4. Consider assumptions A1-A4 for the case of time-
invariant delays, and let tk, sk, G, and Hk be de�ned as in
(12) , then the following linear relation is satis�ed:

tk ≤ Gtk−1 +Hk−1sk−1. (15)

Next, we show that given an appropriate selection of
the gradient step-size, the R-ADD-OPT algorithm is
guaranteed to converge to the optimal solution of the
problem in (1) , regardless the length of time-invariant
delays on the transmission links. It is worth mentioning
that, the range of the gradient step-size that can guarantee
convergence, can be computed a priori based on the
maximum �xed transmission delay in the network, given

that it is bounded. The step-size range that guarantees the
convergence of the R-ADD-OPT algorithm to the optimal
solution, is given by Lemma 5, and its proof is available
in the Appendix.

Lemma 5 (Gradient step-size for convergence, Xi
et. al. [16]) . Consider the matrix Gα being a function of the
step-size α, as de�ned in (12) . It is worth mentioning that every
element in Gα, other than the step-size α, is constant. Then, it
follows that ρ (Gα) < 1 if the step-size α ∈ (0, ᾱ), where

ᾱ = min

{√
δ2 + 4n̄µ(1− σ)2θ − δ

2θ
,

1

n̄L

}
, (16)

and δ = n̄µcdεLỹ(1−σ+ ξ), θ = cdεL2yỹ2(L+ n̄µ), while
c and d are the constants from the equivalence of ‖·‖ de�ned in
Lemma 1 and ‖·‖2.

Theorem 1. Consider the R-ADD-OPT algorithm in (5)
and let assumptions A1-A4 hold. The R-ADD-OPT algorithm
converges exponentially for an appropriate gradient step-size
α ∈ (0, ᾱ), where ᾱ is given in (16) , which depends on the
upper bound of the delays in the network.

Proof. In order to prove the linear convergence of R-ADD-
OPT, it is su�cient to show that ‖tk‖ in (15) goes to zero
exponentially. To this aim, it is su�cient to show that:

• The spectral radius of matrix G is less than 1,
i.e., ρ(G) < 1, that is the largest absolute value of
the eigenvalues of G is less than 1. Following the
results of Lemma 5, we can guarantee that ρ(G) < 1
if the step-size is within the range α ∈ (0, ᾱ), where
ᾱ is given in (16) .

• The term Hk decays in linear fashion. This can be
shown since 0 < γ1 < 1, and hence according to [16,
Lemma 5], Hk decays with k.

�

V. Numerical Example

Consider a network of 5 agents (nodes), represented by
the digraph shown in digraph in Fig. 2. In this example,
the main goal of the nodes is to allocate their resources in
order to minimize a global cost function of the form of
(1) , where each node is endowed with a scalar local cost
function fi(x) : R → R. Such scalar local cost functions,
within the context of the distributed resource allocation
(DRA) problem, are often quadratic of the form:

fi(x) =
1

2
βi (x− ϕi)2 (17)

where βi > 0, ϕi ∈ R is the demand in node vi (and
in our case is a positive real number), and x is a global
optimization parameter that will determine the resource
allocation at each node. The optimal allocation for problem
(1) with local quadratic cost functions as in (17) can be
solved in closed form, and its minimizer x∗ is given by

x∗ = arg min
x∈X

∑
vi∈V

fi(x) =

∑
vi∈V βiϕi∑
vi∈V βi

(18)



where X is the set of feasible values of x. Note that if
βi = 1 for all vi ∈ V , the optimal solution is the average
consensus value.

Each node vj chooses the weights of its out-going links, as
de�ned in (3) , and executes the R-ADD-OPT iterations in
(5) . The nodes initiate their iterations at x0 = [4 1 5 2 3]>,
y0 = [1 1 1 1 1]>, and β0 = [1 5 3 4 1]>. The maximum
delay in the network is τ̄ = max{τ̄ ji}. In this setting, the
range on the step-size that guarantees convergence can be
computed by setting c = d = L = 1, y = 1.67, ỹ = 3,
µ = 0.1, ε = 1.1, and ξ = 1.13 to (16) .
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Fig. 2: Digraph consisting of �ve agents.

To emphasize the in�uence of delays on the convergence
speed of the R-ADD-OPT algorithm, we compute σ as
given in Lemma 3 for di�erent upper bound on the delays.
As shown in Table II, with longer delays on the links,
σ approaches one as the second largest eigenvalue of Ξ
approaches one, while for the non-delayed case, the σ
parameter is the second largest eigenvalue of P .

TABLE II: Parameter σ for di�erent upper bound on the delays.

τ̄ 0 2 5 10
σ 0.599 0.877 0.963 0.987

Fig. 3 depicts the variation of spectral radius of matrix
Ga, i.e., ρ(Ga), with respect to step-size, for di�erent
lengths of maximum delay in the network. In particular,
Fig. 3 indicates the validity of the theoretical bounds on the
step-sizes. Additionally, we can observe that we can achieve
the best convergence rate be selecting the step-size that
minimizes the spectral radius. Intuitively we can infer that
for larger delays the gradient step-size should be smaller
to guarantee convergence to the optimal value.
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Fig. 3: Spectral radius with alpha step-size value for di�erent delays.

To get intuition about the convergence rate of the R-
ADD-OPT algorithm with respect to di�erent lengths
of delays, we plot the residual 1

n

∑n
i=1

(
zik − x∗

)2
, for

di�erent upper bounds on the delays. In this example we set
the step-size on the value that minimizes the spectral radius
as shown in Fig. 3, and we examine both time-invariant
and time-varying delays, assuming that all available (and
non-self loops) links are delay-prone. In particular, for
time-invariant delays, the information is delayed by exactly
τ̄ on all delay-prone links, while for time-varying delays,
the delay length is random and within 0 ≤ τ jik ≤ τ̄?. As
shown in Fig. 4, the convergence rate of the R-ADD-OPT
algorithm to the optimal solution depends on the length of
the delays, and the step-size should be set at lower values
for longer delays on links such that the convergence is
guaranteed (see Fig. 3). Despite showing a single ensemble
for the time-varying delays in Fig. 4, we ran simulations
for several di�erent realizations for random integer variable
τ jik , satisfying 0 ≤ τ jik ≤ τ̄?. It is conjectured that the R-
ADD-OPT algorithm works also for bounded time-varying
delays, as long as the step-size is within a range speci�ed
by the delay upper bound τ̄?. However, the proof for this
range, while it is possibly a conservative bound, remains
an open problem.
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Fig. 4: Residual for di�erent upper bound on the delays in the network
τ̄ . Time-varying delays are within the bound 0 ≤ τ jik ≤ τ̄

?.

VI. Conclusions

In this paper, we proposed a modi�ed version of the
ADD-OPT algorithm, called R-ADD-OPT, that handles
heterogeneous transmission delays over unidirectional
networks. We showed analytically that if the gradient step-
size of the R-ADD-OPT algorithm is within a certain
prede�ned range, the agents are guaranteed to converge
to the optimal solution of the distributed optimization
problem, regardless the length of delays on the transmission
links. The range of the step-size that can guarantee
convergence, can be computed a priori based on the
maximum transmission delay in the network, given that it is
bounded. Finally, we showed with experimental simulations
the potential of the R-ADD-OPT algorithm to converge
to the global optimal value in the presence of time-varying
delays on the communication links.



Appendix

Proof of Lemma 1. First, from Perron-Frobenius Theo-
rem we know that ρ(Ξ) = 1 since Ξ is column-stochastic
and irreducible. Every eigenvalue of Ξ other than the largest
in magnitude, i.e., |λ1|, is strictly less than ρ(Ξ). Moreover,
since Ξ is primitive, we know that π is a strictly positive
(right) eigenvector corresponding to the eigenvalue of 1
such that 1>n̄π = 1, and hence Ξ∞ = limk→∞ Ξk = π1>n̄ .
One can also verify that ΞΞ∞ = Ξ∞Ξ∞ = Ξ∞. Then it
follows that:

Ξa− Y∞ā = Ξa− Ξ∞a

= Ξa− Ξ∞a + Ξ∞Ξ∞Y∞ā− ΞΞ∞Y∞ā

= (Ξ− Ξ∞)(a− Y∞ā).

Therefore, considering the right eigenvector π of Ξ, we
get:

‖Ξa− Y∞ā‖π = ‖(Ξ− Ξ∞)(a− Y∞ā)‖π
(i)

≤ ‖Ξ− Ξ∞‖π ‖a− Y∞ā‖π
(ii)

≤ σ ‖a− Y∞ā‖π ,
where (i) stems from the sub-multiplicative matrix norm
property and (ii) stems from Lemma 3. �

Proof of Lemma 4. The proof follows the results of [16]
mutatis mutandis by considering the augmented matrix-
vector form of the R-ADD-OPT algorithm in (6) , which
we include here for completeness. Let assumptions A1-A4
hold. For the �rst element ‖x̂k − Y∞x̂k‖, we �rst substitute
x̂k from (6a) , and x̄k from Lemma 6, and we get:

‖x̂k − Y∞x̄k‖ =
∥∥Ξx̂k−1 − αŵk−1 − Y∞(x̄k−1 − αḡẑk−1)

∥∥
≤ ‖Ξx̂k−1 − Y∞x̄k−1‖

+ α
∥∥ŵk−1 − Y∞ḡẑk−1

∥∥
≤ σ ‖x̂k−1 − Y∞x̄k−1‖

+ α
∥∥ŵk−1 − Y∞ḡẑk−1

∥∥ , (19)

where the last inequality holds by Lemma 1.
For the second element, ‖x̄k − ẑ∗‖2, we �rst substitute

x̄k from Lemma 6, and we get:

‖x̄k − ẑ∗‖ =
∥∥x̄k−1 − αḡẑk−1 − ẑ∗

∥∥
2

=
∥∥x+ − ẑ∗ − αḡẑk−1 + αḡx̄k−1

∥∥
2

≤ η ‖x̄k−1 − ẑ∗‖2 + α
∥∥ḡẑk−1 − ḡx̄k−1

∥∥
2

≤ η ‖x̄k−1 − ẑ∗‖2 + αL ‖ẑk−1 − x̄k−1‖2
≤ η ‖x̄k−1 − ẑ∗‖2 + αL

∥∥Y −1
k−1x̂k−1 − x̄k−1

∥∥
2

≤ η ‖x̄k−1 − ẑ∗‖2
+ αL

∥∥Y −1
k−1 (x̂k−1 − Y∞x̄k−1)

∥∥
2

+ αL
∥∥(Y −1

k−1Y∞ − In̄
)
x̄k−1

∥∥
2

+ αLỹψγk−1
1 ‖x̄k−1‖2 , (20)

where the second equality holds by letting x+ = x̄k−1 −
αḡx̂k−1, the �rst inequality holds by applying Lemma 7,
and the second inequality by making use of the Lipschitz-
continuity assumption from A3. Then, the third inequality

is obtained by substituting ẑk−1 from (6c) , and �nally, we
get the last inequality by applying [16, Lemma 8].

For the third element,
∥∥ŵk − Y∞ḡẑk

∥∥, we substitute (6d) ,
and we get:∥∥ŵk − Y∞ḡẑk

∥∥ =
∥∥∥Ξŵk−1 +∇f̂(ẑk)−∇f̂(ẑk−1)− Y∞ḡẑk

∥∥∥
≤
∥∥Ξŵk−1 − Y∞ḡẑk−1

∥∥
+
∥∥∥(∇f̂(ẑk)−∇f̂(ẑk−1)

)
−
(
Y∞ḡẑk − Y∞ḡẑk−1

)∥∥∥
≤ σ ‖ŵk−1 − Y∞w̄k−1‖

+
∥∥∥(∇f̂(ẑk)−∇f̂(ẑk−1)

)
−
(
Y∞ḡẑk − Y∞ḡẑk−1

)∥∥∥
≤ σ ‖ŵk−1 − Y∞w̄k−1‖

+
∥∥∥(In̄ − Ξ∞)

(
∇f̂(ẑk)−∇f̂(ẑk−1

)∥∥∥
2

≤ σ ‖ŵk−1 − Y∞w̄k−1‖+ dεL ‖ẑk − ẑk−1‖2 (21)

where the second inequality comes from Lemma 6 and
Lemma 1. Then, since 1

n̄Y∞1n̄1>n̄ = Ξ∞, we get the
third inequality, while by using the Lipschitz-continuity
assumption A3, we obtain the last inequality. Now we need
to bound ‖ẑk − ẑk−1‖2:

‖ẑk − ẑk−1‖2 ≤
∥∥Y −1

k (x̂k − x̂k−1)
∥∥

2

+
∥∥(Y −1

k − Y −1
k−1

)
x̂k−1

∥∥
2

≤
∥∥Y −1

k (Ξ− In̄) x̂k−1

∥∥
2

+ α
∥∥Y −1

k ŵk−1

∥∥
2

+
∥∥Y −1

k − Y −1
k−1

∥∥
2
‖x̂k−1‖2

≤
(
ỹξ + αỹ2yL

)
‖x̂k−1 − Y∞x̄k−1‖2

+ αỹ
∥∥wk−1 − Y∞ḡẑk−1

∥∥
2

+ αỹyL ‖x̄k−1 − ẑ∗‖2
+ (αyL+ 2)ỹ2ψγk−1

1 ‖x̂k−1‖2 , (22)

where the �rst inequality is obtained by substituting (6c) ,
second inequality by substituting (6a) , third inequality holds
due to (Ξ− In̄)Y∞x̂k−1 = 0n̄, and:∥∥ḡx̄k−1

∥∥ =

∥∥∥∥ 1

n̄
1n̄1>n̄∇f̂(x̄k−1)

∥∥∥∥
2

≤ L ‖x̄k−1 − ẑ∗‖ , (23)

which bounds the following:∥∥Y −1
k ŵk−1

∥∥ ≤∥∥Y −1
k

(
ŵk−1 − Y∞ḡẑk−1

)∥∥
2

+
∥∥Y −1

k Y∞ḡx̄k−1

∥∥
2

+
∥∥Y −1

k Y∞
(
ḡẑk−1 − ḡx̄k−1

)∥∥
2

≤ỹ
∥∥ŵk−1 − Y∞ḡẑk−1

∥∥
2

+ ỹyL ‖x̄k−1 − ẑ∗‖2
+ ỹyL ‖ẑk−1 − x̄k−1‖2

≤ỹ
∥∥ŵk−1 − Y∞ḡẑk−1

∥∥
2

+ ỹyL ‖x̄k−1 − ẑ∗‖2
+ ỹ2yL ‖x̂k−1 − Y∞x̄k−1‖2
+ ỹ2yLψγk−1

1 ‖x̂k−1‖2 , (24)

where the last inequality holds due to the bound of
‖ẑk−1 − x̄k−1‖ obtained from the last inequality of (20) .
Finally, by substituting (22) in (21) we get the bound on



the third element, given by:∥∥ŵk − Y∞ḡẑk
∥∥ ≤ (cdεLξỹ + κ) ‖x̂k−1 − Y∞x̄k−1‖

+ αdεL2yỹ ‖x̄k−1 − ẑ∗‖2
+ (σ + αcdεLỹ)

∥∥ŵk−1 − Y∞ḡẑk−1

∥∥
+ (αyL+ 2)dεLỹ2ψγk−1

1 ‖x̂k−1‖2 , (25)

where κ = αcdεL2yỹ2.
Proof completed with all elements bounded. �

Proof of Lemma 5. To derive the range of the gradient
step-size α in (16) that maintains the spectral radius
ρ(Ga) < 1, we adopt similar analysis as in [16] mutatis
mutandis, by replacing n, with the total number of nodes
in the augmented digraph n̄. �

Lemma 6 (Auxiliary relation) . Consider the variables x̄k
and w̄k from (9) that incorporate the transmission delays due
to the exchange of information between the nodes. The following
equations hold for all k :

(a) w̄k = ḡẑk, and (b) x̄k+1 = x̄k − αḡẑk.

Proof. From the column-stochasticity property of Ξ, and
(6d) we have that w̄k = w̄k−1 + ḡẑk −∇ḡẑk−1. Writing w̄k

recursively we get w̄k = w̄0+ḡẑk−ḡẑ0 , which gives w̄k = ḡẑk
due to the initial conditions in (6d) , and ŵ0 = ∇f̂(ẑ0).
From (6a) we have that x̄k+1 = 1

n̄1n̄1>n̄ (Ξx̂k − αŵk) =
x̄k − αḡẑk. �

Lemma 7 (Bubeck [30]) . Let Assumption A3 hold for the
objective functions fi(x) in (1) . For any x ∈ Rp de�ne x+ =
x− α∇f(x), where 0 < α < 2

n̄L . Then

‖x+ − x∗‖ ≤ η ‖x− x∗‖ (26)

where η = max(|1− αn̄L|, |1− αn̄µ|).
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