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Abstract— In this paper, we address the average consensus
problem of multi-agent systems for possibly unbalanced and
delay-prone networks with directional information flow. We
propose a linear distributed algorithm (referred to as RP-
PAC) that handles asynchronous updates and time-varying
heterogeneous information delays. Our proposed distributed
algorithm utilizes a surplus-consensus mechanism and informa-
tion regarding the number of incoming and outgoing links to
guarantee state averaging, despite the imbalanced and delayed
information flow in directional networks. The convergence of
the RPPAC algorithm is examined using key properties of the
backward product of time-varying matrices that correspond to
different snapshots of the directional augmented network.

Index Terms— distributed algorithms, push-pull consensus,
average consensus, directed graphs, time-varying heterogeneous
delays.

I. INTRODUCTION

Distributed consensus algorithms have recently gained sig-
nificant prominence due to their widespread applicability in
various domains, including wireless sensor networks, multi-
agent systems, and smart power grids. The main objective of
these algorithms is to enforce a network of interconnected
agents (or nodes) to collectively converge towards a common
value, known as the consensus, by means of local information
exchange (see [1] for an overview of consensus methods).
Among the diverse consensus problems, average consensus
is distinguished as a fundamental challenge, wherein the
agents aim to cooperatively compute the average of their
initial values held by each individual node. This problem has
gained significant attention for its relevance in tasks such as
distributed formation control [2]–[4], distributed estimation
and filtering [5]–[8], and distributed optimization [9]–[13].

Substantial research on distributed average consensus has
been conducted in the context of bidirectional networks
where the information between agents flow in both directions
forming an undirected graph [14]–[16]. However, in most
real-world multi-agent systems, agents communicate over
wireless channels in which they have different transmitting
power capabilities and experience different levels of inter-
ference. As a consequence the communication links become
inherently directional forming directed graphs (digraphs).
Although directional networks provide a more realistic char-
acterization of the underlying communication network, fur-
ther complexities and challenges arise when agents aim
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to achieve average consensus in a distributed manner. For
instance, the imbalance in the flow of information, due to
the directed links, may lead to slower convergence or even
incapability in reaching average consensus.

To overcome this issue, the works in [17]–[19] have
provided different approaches where agents update their
state variables through a linear combination of the incoming
(received and owned) information. A necessary condition
towards reaching average consensus is to prevent information
from becoming trapped at a specific agent and to guarantee
that the information flows throughout the network, thus, the
underlying digraph should be strongly connected1. The Ratio
Consensus (RC) algorithm proposed in [20], proved to be
able to reach average consensus by computing in an iterative
way the ratio of two concurrently running linear iterations:
one to compute a weighted average of the network’s initial
values, and one to track the information flow imbalance.
Nevertheless, such methods that require agents to send their
state variables by weighting them according to the number
of their outgoing links (forming a column-stochastic (CS)
matrix of weights), require additional computation per itera-
tion for each agent, that is the nonlinear computation of the
ratio of the two concurrently running iterations. Another ap-
proach towards mitigating the information flow imbalance of
digraphs for reaching average consensus has been proposed
in [19]. In particular, the authors proposed a surplus-based
approach where the information flow imbalance is handled
by augmenting the state of each agent with an additional
variable (often called surplus) that locally tracks individual
state updates through the assignment of weights on both the
incoming and outgoing links that form both row-stochastic
(RS) and CS matrices, respectively.

Taking one step further towards more realistic scenarios,
one should take into consideration that the information
flows over delay-prone communication links due to network
congestion and packet retransmissions requested as a result
of decoding errors detected at the receiving agent [21]–[25].
This highlights the necessity of ensuring resilience to delays
towards reaching average consensus. Under the conditions on
delay-prone directed information exchange between agents,
the authors in [22] proposed a robustified version of the ratio
consensus algorithm (hereinafter referred to as RRC) which
is able to reach asymptotic average consensus in the presence
of bounded time-varying delays. However, the nonlinear
nature of RRC makes it difficult to find tight bounds on
the convergence rate of the algorithm itself [22], but also to

1A digraph is called strongly connected if there exists a directed path
between any pair of nodes in the network. This ensures that the information
propagates and reaches all agents in the network.



various consensus-based distributed optimization algorithms
that use RC as its consensus protocols [26]–[30].

This paper aims at developing a linear discrete-time dis-
tributed average consensus algorithm which operates over
directed networks, and can handle heterogeneous and time-
varying information delays. Specifically, we propose a linear
surplus-based distributed protocol that enforces nodes in the
network to converge to the average of their initial values,
although the communication links are directional and prone
to time-varying delays. To the best of our knowledge, this is
the first linear (push-pull) asynchronous average consensus
algorithm that reaches the exact average of the agents’ initial
values over delay-prone directional links in a network. The
characteristics of our proposed algorithm in comparison with
main average consensus algorithms that operate in digraphs,
are emphasized in Table I.

Algorithm Linear RS CS Delays

[20] 7 7 3 7

[22] 7 7 3 3

[19] 3 3 3 7

RPPAC 3 3 3 3

TABLE I: Comparison of the characteristics of the main
average consensus algorithms in digraphs.

II. PRELIMINARIES

A. Network Model

Consider a group of n > 1 agents communicating over an
unreliable time-invariant and directed network. The intercon-
nection topology of the communication network is modeled
by a digraph G = (V, E). Each agent vj is included in the
set of digraph nodes V = {v1, · · · , vn}. The interactions
between agents are included in the set of digraph edges
E ⊆ V ×V . The total number of edges in the network is
denoted by m = |E|. A directed edge εji , (vj , vi) ∈ E
indicates that node vj receives information from node vi,
i.e., vi → vj . The nodes that transmit information to node
vj directly are called in-neighbors of node vj , and belong
to the set N in

j = {vi ∈ V|εji ∈ E}. The number of nodes
in the in-neighborhood set is called in-degree and is denoted
by dinj = |N in

j |. The nodes that receive information from
node vj directly are called out-neighbors of node vj , and
belong to the set N out

j = {vl ∈ V|εlj ∈ E}. The number
of nodes in the out-neighborhood set is called out-degree
and is denoted by doutj = |N out

j |. Each node vj ∈ V
has immediate access to its own local state, and thus we
assume that the corresponding self-loop is available εjj ∈ E ,
although it is not included in the nodes’ out-neighborhood
and in-neighborhood. In G a node vi is reachable from a
node vj if there exists a path from vj to vi which respects the
direction of the edges. The digraph G is said to be strongly
connected if every node is reachable from every other node.

B. Problem Setup

At each time instant k ≥ 0 each node vj ∈ V main-
tains a scalar state xj(k) ∈ R. For analysis purposes,
we define the aggregate state of all nodes by x(k) =
(x1(k), . . . , xn(k))

> ∈ Rn. The goal of the agents is to
collaboratively solve the following discrete-time average
consensus (DTAC) problem:

Problem 1: x̄ :=
1

n

n∑
i=1

xi(0) (1)

where x̄ denotes the network-wide average of all agents’
initial values, xi(0). Clearly, in the absence of global knowl-
edge, individual agents are required to execute an iterative
distributed algorithm to eventually converge to the initial
network-wide average, by updating their states using infor-
mation received from their neighboring nodes.

C. Average Consensus using Push-Pull Weights (PPAC)

A linear algorithm for reaching average consensus over
directed and strongly connected networks, has been proposed
in [19]. The main idea behind their proposed algorithm is to
maintain a time-invariant state sum 1Tx, such that the agents
do not lose the track of the initial average x(0), which is the
main difficulty when the network is asymmetric (modeled via
digraph). To achieve this, at each iteration k, each agent vj ∈
V maintains a local state variable xj(k) ∈ R, and an auxiliary
variable sj(k) ∈ R (called surplus). The surplus variable
locally records the state changes of individual nodes such
that 1>(x(k)+s(k)) = 1>x(0) for all time k, where s(k) =
(s1(k), . . . , sn(k))

> ∈ Rn. Then, each agent vj iteratively
updates its variables at each time step k as

xj(k+1) = γsj(k)+
∑

vi∈N in
j ∪{j}

rjixi(k), (2a)

sj(k+1) = xj(k)−xj(k+1)+
∑

vi∈N in
j ∪{j}

cjisi(k), (2b)

initialized at arbitrary xj(0) ∈ R, and sj(0) = 0. Each agent
vj assigns the weights for the incoming information based
on its in-degree as:

rji =


1

1+dinj
, if vi ∈ N in

j or j = i,

0, otherwise,
(3)

where the resulting weights rji ≥ 0 (often called “pull”
weights) are the (j, i)-th entries of the row-stochastic matrix
R = {rji} ∈ Rn×n+ . The assignment of “pull” weights is
straightforward since each agent can easily obtain its in-
degree by counting the incoming streams of information.
Moreover, each agent vj assigns the weights for the outgoing
information based on its out-degree as:

clj =


1

1+doutj

, if vl ∈ N out
j or l = j,

0, otherwise.
(4)



where the resulting weights clj ≥ 0 (often called “push”
weights) are the (l, j)-th entries of the column-stochastic
matrix C = {clj} ∈ Rn×n+ . Note that, agents are required to
have the knowledge of their out-degree to assign the weights
clj , hence it is required to have either an estimate of the
out-degree [31], [32] or to compute the out-going streams of
information by utilizing 1-bit feedback links [24].

The parameter γ > 0 (often referred to as surplus gain)
denotes the gain by which the surplus is amplified, such that
each agent regulates its convergence speed to the average
consensus value. The selection of parameter γ requires global
knowledge of the network size.

Remark 1. The weight matrices R and C that are formed by
assigning the weights as in (3) and (4), preserve row- and
column-stochasticity, respectively. This implies that R1 = 1
and 1>C = 1>. Moreover, the fact that digraph G includes
self-loops (each agent has access to its own variables), implies
that rii > 0 and cii > 0, ∀vi ∈ V .

III. ALGORITHM DEVELOPMENT

In this section we design a linear distributed strategy for
each node vj ∈ V in a directed network G = (V, E) to
handle information that is received over delay-prone direc-
tional links, such that all the nodes converge to the average
consensus value in (1). More specifically we assume that,
the transmission on the link εji at time step k experiences
a delay, τji(k), i.e., the (discrete) time interval between
the transmitting and receiving time steps. The delays on
the transmission links are heterogeneous, time-varying, and
bounded, i.e., 0 ≤ τji(k) ≤ τ̄ji ≤ τ̄ <∞, where τ̄ji denotes
the maximum delay over the link εji, and τ̄ the maximum de-
lay of the network over all the links i.e., τ̄ = maxεji∈E{τ̄ji}.
Note that, each node vj has immediate access to its own local
state xj , and hence τjj(k) = 0 for all vj ∈ V and all k ≥ 0.

A. Robustified Push-Pull Average Consensus (RPPAC)

Inspired by the linear distributed algorithm in [19] for
reaching average consensus over reliable directed graphs,
we introduce a robustified alternative by which nodes can
reach exact average consensus by handling heterogeneous
time-varying delays. Although the number of nodes in the
network and the interconnecting links are considered fixed,
the presence of time-varying and heterogeneous delays affect
the way that each node should assign the consensus weights
such that the sum of the nodes’ values (i.e., mass) of the
network is preserved at each time step. Hence, to preserve the
mass of the network fixed, we devise a new linear algorithm
(hereinafter called RPPAC) based on the surplus consensus in
[19], where each node updates its information state (at each
iteration) via a linear combination of the (possibly delayed)
information state received from its neighbors at that iteration.
This algorithm converges to the exact average of the nodes’
initial values, despite the presence of arbitrary, yet bounded
time-delays.

In particular, at each iteration k, each agent vj ∈ V
maintains a local state variable xj(k) ∈ R, and an auxil-
iary surplus variable sj(k) ∈ R, that is used to preserve

the total mass in the network constant at each time step
(i.e., 1>(x(k)+s(k)) = 1>x(0), ∀k ≥ 0). First, each node
vj sets xj(0) = Vj , sj(0) = 0, and 0 < γ < 1. Prior
the iterative phase of the RPPAC algorithm, it broadcasts
dummy packets and receives an acknowledgment feedback
signal from each in-neighbor to acquire its in-degree and
out-degree (see [24] for more details on the acquisition of
out-degree). Following, at each iteration k, each node vj
performs the following steps:

Broadcasting: It broadcasts its own (unweighted) state vari-
able, xj(k), and a weighted version of its surplus variable,
cljsj(k), to its out-neighbors vl ∈ N out

j , over possibly
delay-prone links εlj ∈ E . The “push” consensus weights
clj for l = 1, . . . , n can be assigned offline by each node
vi, given that the network is fixed, using the “push” weight
assignment strategy in (4). This ensures that at each time step
k the total mass of the surplus variable is fully (and equally)
distributed to the out-neighbors of vj , since

∑
vl∈N out

j
clj =

1. Notice that, node vj transmits its local variables without
considering that the information sent over its outgoing links
εlj for any vl ∈ N out

j might experience a delay.

Receiving: It receives the weighted surplus variables
cjisi(k− δ) and the state variables xi(k− δ) for all 0 ≤
δ ≤ τ̄ji from (possibly some of) its in-neighbors vi ∈ N in

j

that arrived over possibly delay-prone links εji ∈ E . Upon
the arrival of these variables, it scales each received state
variable xi(k− δ) by the “pull” consensus weights rji(k)
as rji(k)xi(k), where the weight rji(k) is assigned by each
node vj depending on the possibly delayed packets arrived
exactly at time step k. The assignment of “pull” weights is
elaborated later in §IV.

Updating: Upon the reception of (possibly delayed) infor-
mation from the in-neighbors of vj , it updates its own state
variable xj(k+1) and its auxiliary surplus variable sj(k+1),
as follows:

xj(k+1) = γsj(k)+
∑

vi∈N in
j ∪{j}

τ̄ji∑
δ=0

rji(k)xi(k−δ)`ji(k−δ)

︸ ︷︷ ︸
possibly delayed incoming states

,

(5a)

sj(k+1) = gj(k+1)+
∑

vi∈N in
j ∪{j}

τ̄ji∑
δ=0

cjisi(k−δ)`ji(k−δ)

︸ ︷︷ ︸
possibly delayed incoming surplus

,

(5b)

where gj(k+1) , xj(k)−xj(k+1) and `ji(k−δ) captures
the delay on link εji at iteration k as:

`ji(k−δ) =

{
1, if τji(k−δ) = δ,

0, otherwise.
(6)

The parameter γ > 0 is a sufficiently small number de-
pending on the network size and topology, and the length of
delays.



IV. CONVERGENCE ANALYSIS

In this section, we analyse the convergence of RPPAC,
by introducing its vector-matrix augmented form that cor-
responds to an augmented digraph that models (possibly)
time-varying delayed information. To simplify the analysis,
we consider that the maximum delay at each link is identical
to the maximum delay in the network, i.e., τ̄ji = τ̄ . To
model all the possible delayed transmissions consider the
following augmentation on the original graph G. For each
agent vj ∈ V , we add τ̄ extra virtual nodes that represent
local buffers which propagate the delayed information to its
destined agent after 0 < δ ≤ τ̄ iterations. Hence the total
number of nodes in the augmented digraph Gα = {Vα, Eα}
is ñ = n(τ̄ + 1), where the actual agents are indexed by
1, . . . , n and the virtual nodes by n+ 1, . . . , ñ. Thus, the
virtual nodes n+1, . . . , 2n model the information delayed
by δ = 1 time step, 2n+1, . . . , 3n model the information
delayed by δ = 2 time steps, and so on.

Based on the augmented digraph model, we further define
the augmented variables x̃ and s̃ that hold the (possibly
delayed) information in the (virtual buffer) nodes as

x̃(k) =
(
x>(k), x(1)(k), . . . , x(τ̄)(k)

)>
, (7)

s̃(k) =
(
s>(k), s(1)(k), . . . , s(τ̄)(k)

)>
, (8)

where x(δ)(k) =
(
x

(δ)
1 (k), . . . , x

(δ)
n (k)

)
, and s(δ)(k) =(

s
(δ)
1 (k), . . . , s

(δ)
n (k)

)
. Then we can rewrite the update phase

of RPPAC in its vector-matrix form as:

x̃(k+1) = R̃(k)x̃(k)+H s̃(k), (9a)

s̃(k+1) = J(k)x̃(k)+(C̃(k)−H)s̃(k), (9b)

where

R̃(k) ,


R(0)(k) R(1)(k) · · · R(τ̄)(k)

I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rñ×ñ+ ,

H ,


γI 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rñ×ñ+ ,

J(k) ,


I−R(0)(k) −R(1)(k) · · · −R(τ̄)(k)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rñ×ñ,

C̃(k) ,


C(0)(k) I · · · 0
C(1)(k) 0 · · · 0

...
...

. . . I
C(τ̄)(k) 0 · · · 0

 ∈ Rñ×ñ+ . (10)

The element at the j-th row and i-th column of R(δ)(k) ∈
Rn×n+ and C(δ)(k) ∈ Rn×n+ , for δ = 0, 1, . . . , τ̄ , are

determined by:

r
(δ)
ji (k) =

{
1

1+|Nα,inj (k)|
, if τji(k−δ) = δ, εji ∈ E ,

0, otherwise,
(11)

where |Nα,in
j (k)| is the virtual in-degree of the actual node

vj which denotes the number of (possibly delayed) incoming
streams of information that arrived at node vj exactly at time
step k; and

c
(δ)
ji (k) =

{
1

1+|N out|
i

, if τji(k−δ) = δ, εji ∈ E ,

0, otherwise.
(12)

By appending the vectors x̃ and s̃ of (9) in a new
augmented state, we get the following matrix form repre-
sentation: [

x̃(k+1)
s̃(k+1)

]
= M(k)

[
x̃(k)
s̃(k)

]
. (13)

where

M(k) ,

[
R̃(k) H

J(k) C̃(k)−H

]
(14)

The following theorem states the conditions on which the
algorithm in (13) achieves average consensus.

Theorem 1. The algorithm in (13) achieves asymptotic aver-
age consensus with the parameter γ > 0 sufficiently small,
if and only if the digraph G is strongly connected, and the
transmission delays are bounded, τji(k) ≤ τ̄ji ≤ τ̄ < ∞ for
all j, i ∈ V .

Proof. A sketch of the proof is provided in the Appendix.

V. SIMULATION RESULTS

Consider a delay-prone directed network, G, shown in
Fig. 1 comprised of ten agents (n = 10), with each agent
vj executing the RPPAC algorithm as described in III. In
this example, the agents’ initial values are set at their unique
identification index, (i.e., xj(0) = j for j = 1, . . . , n), while
the auxiliary variables are initialized at sj(0) = 0 for all
vj ∈ V . Based on this configuration, the average of the
agents’ initial values is x̄ = 5.5. At each time step k the
packets transmitted over the network’s communication links
are possibly and uniformly experiencing a time delay τji ≤ τ̄
for all εji ∈ E .

v1v2v3

v4v5v6v7

v8v9v10

Fig. 1: Delay-prone digraph G comprised of 10 agents. Self-
loops are allowed but not shown for ease of presentation.



As a first step towards validating our theoretical results,
we run the RPPAC algorithm over different directional
networks with heterogeneous time-varying delays bounded
by τ̄ = {0, 2, 5}, with a fixed surplus gain γ = 0.1. The
state variables xi at each agent vi converge to the average
consensus value x̄ = 5.5, as shown in Fig. 2, while the
surplus variables sj , are driven to 0, as shown in Fig. 3. It
is worth mentioning that, the agents successfully converge
to the average consensus value, although the surplus gain γ
is not carefully chosen based on the network topology and
size, as well as the length of delays, but it is rather chosen
to be relatively small and same for all considered τ̄ .
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Fig. 2: State variable xj(k) at each agent.
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Fig. 3: Surplus variable sj(k) at each agent.

In Fig. 4, we present the mean consensus error
1
ne
>(k)e(k) where e(k) , x(k)−1x̄, achieved by executing

the distributed RPPAC algorithm, after averaging over 100
Monte Carlo simulations for three different upper bounds on
the delays, i.e., τ̄ = {0, 2, 5} and γ = 0.1. The mean square
consensus error for the delay-free network is driven to 0
faster than the delay-prone networks, with the same surplus
gain parameter γ.
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Fig. 4: Mean square consensus error for different length of
delays.

In Fig. 5 we present the spectral gap2 of M(k) for different
upper bounds on the delays, i.e., τ̄ = {0, 2, 5}. The higher

2Spectral gap is the difference between the moduli of the two largest
eigenvalues of a matrix, i.e., |λ1|−|λ2| where λi is the i-th eigenvalue of
a matrix A ∈ Rn×n, with |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

the spectral gap, the faster the convergence of the RPPAC
algorithm, as the second largest absolute eigenvalue of M(k),
λ2, moves away from the spectral radius λ1 = ρ(M(k)).
As depicted in Fig. 5, when the length of delays on the
links of the network is longer, the spectral gap of the
corresponding matrix M(k) becomes smaller, leading to
slower convergence. This behavior is shown in Fig. 6 for
different upper bounds on the delays, i.e., τ̄ = {0, 1, . . . , 10}.
However, for a given matrix M(k) that corresponds to a
particular snapshot of the interactions in the network, one
can choose a surplus gain γ that guarantees the fastest
convergence to the average consensus value.
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Fig. 5: Mean spectral gap of M(k) that corresponds to
different for different upper bounds on the delays τ̄ =
{0, 2, 5}.
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Fig. 6: Mean spectral gap of M(k) with γ = 0.1.

Following the discussion on the selection of the surplus
gain γ, we run 100 Monte Carlo simulations for the network
G with an upper bound on the delays of τ̄ = 2, and different
surplus gains γ = {0.01, 0.1, 0.3}. The convergence rate
in terms of the mean consensus error for this example is
shown in Fig. 7. Notice that, the fastest convergence using
the RPPAC algorithm for this particular configuration, is
with γ = 0.1, for which the spectral gap is maximized, as
previously shown in Fig. 5.
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Fig. 7: Mean square consensus error with τ̄ = 2 and γ =
{0.01, 0.1, 0.3}.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have tackled the discrete-time average
consensus in multi-agent systems where the inter-agent com-



munication is directional, potentially unbalanced, and delay-
prone. We have introduced a linear distributed algorithm
designed to accommodate asynchronous updates and cope
with time-varying heterogeneous delays. Our proposed al-
gorithm leverages knowledge about the number of incoming
and outgoing links for each agent, thereby ensuring that state
averaging is achieved even in the presence of an asymmetric
network structure and information flow delays.

RPPAC brings forward several interesting challenges. For
example, what is the optimal choice of γ for guaranteeing
the fastest convergence? Additionally, it would be interesting
to investigate how nodes could choose their own γ, i.e., γi,
guaranteeing that convergence is reached. A promising direc-
tion for future research is to study the proposed asynchronous
push-pull average consensus algorithm in the context of
distributed optimization.

APPENDIX

Sketch of the Proof of Theorem 1:
We start by partitioning M(k) into the summation of the
terms M0(k) and M1, i.e.,

M(k) = M0(k)+M1, (15)

where

M0(k) :=

[
R̃(k) 0

J(k) C̃(k)−H

]
, and M1 :=

[
0 H
0 0

]
.

M0(k) is lower block triangular, its eigenvalues are the union
of eigenvalues of its block diagonal elements, that is, the
matrices R̃(k) and C̃(k)−H , i.e., its spectrum is

σ(M0(k)) = σ
(
R̃(k)

)
∪ σ

(
C̃(k)−H

)
,

where σ(·) denotes the spectrum, and R̃(k) and C̃(k) are the
row- and column-stochastic matrices defined in (10), with
spectral radius ρ(R̃(k)) = ρ(C̃(k)) = 1.

Since G is strongly connected, the corresponding aug-
mented graph Gα that models the delayed information is
jointly strongly connected after τ̄+1 steps [22]. Therefore,
any β−length word Ē(β) = (C̃(k+ β)−H)(C̃(k+ β −
1)−H) . . . (C̃(k+1)−H) and R̄(β) = R̃(k+β)R̃(k+β−
1) . . . R̃(k+1), for any integer β ≥ τ̄+1, gives graphs that
are strongly connected.

We start by defining the augmented state by concatenating
the state and surplus variables of all the augmented nodes as
χ(·) =

[
x̃>(·), s̃>(·)

]>
. First, consider the state and surplus

variables update using the RPPAC in (13) initialized with
χ(k0), at iteration k2:

χ(k2) = M(k1)χ(k1) = M(k1)M(k0)χ(k0).

We examine the backward product of matrices M(k1)M(k0).
From (15),

M(k1)M(k0) = (M0(k1)+M1)(M0(k0)+M1)

= M0(k1)M0(k0)+M0(k0)M1+M1M0(k0)+M2
1

(a)
= M0(k1)M0(k0)+M0(k0)M1+M1M0(k0), (16)

where (a) stems from the fact that M2
1 = 0ñ×ñ (comes

directly from the definition of M1 in (15)). Next, con-
sider the corresponding backward product of matrices
M(k2)M(k1)M(k0), i.e.,

M(k2)M(k1)M(k0)

= (M0(k2)+M1)
[
M0(k1)M0(k0)

+M0(k0)M1+M1M0(k0)
]

(b)
= M0(k2)M0(k1)M0(k0)+M0(k2)M0(k0)M1+

M0(k2)M1M0(k0)+M1M0(k1)M0(k0)+

M1M0(k0)M1, (17)

where (b) stems again from the fact that M2
1 = 0ñ×ñ.

Continuing in the same way, we can see that a lot of terms
that have M1 on the left-side of the product will be cancelled
out. Additionally, we can deduce the following properties
that hold for any integer β ≥ τ̄+1, for the β−length word
M̄(β) = M(k+β)M(k+β−1) . . .M(k+1).
• Since the product of lower triangular matrices results

in a lower triangular matrix, then the product M̄0,(β) ,
M0(k+β)M0(k+β−1) . . .M0(k+1) results in a lower-
triangular matrix of the form:

M̄0,(β) =

[
R̄(β) 0
∗ Ē(β)

]
,

where ρ(R̄(β)) = 1 which is known from the product
of row-stochastic matrices. Then, γ should be chosen
such that ρ(Ē(β)) < 1 [33]. This can be secured for 0 <

γ < c, where c , min{C} is the minimum consensus
weight of the original column-stochastic matrix C as
formed by the weight assignment in (4). This comes
from the fact that the diagonal elements of the top-left
block of dimension n of C̃(k)−H are strictly positive
by enforcing 0 < γ < c. While this is a conservative
bound guaranteeing that ρ(C̃(k)−H) < 1 ∀k it gives a
simple bound for the values of γ.

• The fact that M2
1 = 0ñ×ñ makes several terms to

be cancelled. The remaining products are such that
they make the correction for the consensus to reach
the average (as demonstrated in the simulations). The
proof of this part is tedious and omitted due to space
limitation. We will include it in the extended version of
the paper.

Based on the aforementioned properties of the product
of β−length M(k) matrices, it is guaranteed that the state
variables of the networked agents executing the RPPAC
algorithm converge to the average consensus value and
concurrently their surplus variables are driven to 0, since
the network is jointly strongly connected after τ̄+1 steps.

Remark 2. The convergence rate of the RPPAC algorithm is
driven by the convergence of the product Ē(β) to 0ñ×ñ. In
other words, the algorithm achieves average consensus when
the surplus variables at each agent si(k) have been completely
released to the corresponding state variable xi(k).



REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus
and Cooperation in Networked Multi-agent Systems,” Pro-
ceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[2] W. Ren, “Multi-Vehicle Consensus with a Time-Varying
Reference State,” Systems and Control Letters, vol. 56, no. 7-
8, pp. 474–483, 2007.

[3] J. A. Fax and R. M. Murray, “Information Flow and Coop-
erative Control of Vehicle Formations,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1465–1476, 2004.

[4] W. Yang, Z. Shi, and Y. Zhong, “Distributed Robust Adaptive
Formation Control of Multi-Agent Systems with Hetero-
geneous Uncertainties and Directed Graphs,” Automatica,
vol. 157, p. 111 275, 2023.

[5] G. Wang, N. Li, and Y. Zhang, “Diffusion Distributed
Kalman Filter over Sensor Networks without Exchanging
Raw Measurements,” Signal Processing, vol. 132, pp. 1–7,
2017.

[6] S. P. Talebi and S. Werner, “Distributed Kalman Filtering and
Control Through Embedded Average Consensus Information
Fusion,” IEEE Transactions on Automatic Control, vol. 64,
no. 10, pp. 4396–4403, 2019.

[7] W. Ren and U. M. Al-Saggaf, “Distributed Kalman–Bucy
Filter with Embedded Dynamic Averaging Algorithm,” IEEE
Systems Journal, vol. 12, no. 2, pp. 1722–1730, 2017.

[8] B. Lian, Y. Wan, Y. Zhang, M. Liu, F. L. Lewis, and T. Chai,
“Distributed Kalman Consensus Filter for Estimation with
Moving Targets,” IEEE Transactions on Cybernetics, vol. 52,
no. 6, pp. 5242–5254, 2020.

[9] R. Xin and U. A. Khan, “A Linear Algorithm for Optimiza-
tion over Directed Graphs with Geometric Convergence,”
IEEE Control System Letters, vol. 2, no. 3, pp. 315–320,
2018.

[10] S. Pu, W. Shi, J. Xu, and A. Nedić, “Push-Pull Gradient
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